Effect on Pituitary-Adrenal Axis: Intravenous administration of doxapram (20 mg/kg) to anesthetized dogs resulted in a marked rise in the adrenal venous blood level of 17-
hydroxycorticosteroids. The peak response occurred at 5 to 7 minutes in most animals. Hypophysectomy prevented this effect of doxapram.

Site and Mechanism of Action: Doxapram appeared to stimulate respirations primarily by an effect on the brain stem, since sectioning of reflex pathways did not abolish its action. The detection of increased electrical activity in both the inspiratory and expiratory centers of the medulla, at doses as low as 0.2 mg/kg, constituted confirmation of this site of action. Only after higher doses were other parts of the brain and spinal cord stimulated. Also, cross circulation experiments have shown that doxapram acts mainly through direct stimulation of central respiratory centers.

The pressor response to doxapram appears to be primarily due to stimulation of brain stem vasomotor areas and it is mediated through the sympathoadrenal system. Adrenalectomy and/or drugs which inhibit the release of sympathetic neurotransmitters were sites capable of reducing the pressor response to doxapram. Spinal section at C2 abolished the pressor effect. Intravenous infusion of doxapram to dogs resulted in a prompt and marked increase in total blood and urinary catecholamines.

Therapeutic Ratio: Doxapram did not produce convulsions as readily as did other respiratory stimulants. In anesthetized animals the ratio between convulsant and respiratory stimulant doses of several such drugs was as follows: doxapram, 70; ethamivan, 35; bemepride, 15; pentyleneetrazol, 4; and picrotoxin, 2.3. In animals anesthetized with barbiturates, it was not possible to establish this ratio for doxapram because convulsions could not be produced.

Interaction with Other Drugs: The respiratory stimulant effects of doxapram in dogs were not blocked by anesthetic doses of the following: phenobarbital sodium, pentobarbital sodium, thiopental sodium, secobarbital sodium, halothane and methoxyflurane. In dogs and cats, doxapram stimulated respiration that was severely depressed with morphine or meperidine.

The respiratory stimulant effects of doxapram in horses were not blocked by anesthetic doses of the following: chloral hydrate and pentobarbital sodium. In dogs and cats, doxapram antagonized the depressant effects of chlorpromazine, mephenesin and methocarbamol on spinal reflexes in unanesthetized cats.

Various combinations of analeptics in acute barbiturate narcosis in dogs have been compared, including mephenesin, phenylpiperazine, methamphetamine and phenylpiperazine, pentyleneetrazol and amphetamine, doxapram and phenylpiperazine, and doxapram alone. While most combinations improved respiratory minute volume quickly, doxapram gave the best response of all. In a similar study comparing the effects of doxapram and various analeptic combinations in dogs, only doxapram was conspicuously effective in increasing ventilation and in shortening sleeping time.

Absorption, Distribution and Fate: Respiratory stimulation was observed in the anesthetized dog after administration by the following routes: intravenous, intramuscular, intraperitoneal, oral, sublingual and subcutaneous.

Doxapram hydrochloride injection, USP – Sterile solution

Modern Veterinary Therapeutics

DIN 02319454 - For veterinary use only.

Active Ingredient: Each mL contains:

Doxapram hydrochloride, USP 20 mg

Non-medicinal Ingredients: Each mL contains:

Benzyl alcohol (as preservative) 9 mg
Water for injection, USP q.s.

Indications: For Dogs, Cats and Horses:
1. To stimulate respirations during and after general anesthesia.
2. To speed awakening and return of reflexes after anesthesia.
3. To initiate respirations following dystocia or cesarean section.
4. To stimulate respirations following dystocia or cesarean section.

Pharmacology: RESPIRAM™ (doxapram hydrochloride, USP) is a potent respiratory stimulant. It is unique in its ability to stimulate respiration at dosages considerably below those required to evoke cerebral cortical stimulation. In nonanesthetized animals the dose required to produce convulsions is some 70 to 75 times the dose required to produce respiratory stimulation. In anesthetized subjects, doxapram also exerts a marked arousal effect. Thus, by promoting the restoration of normal ventilation and producing early arousal following general anesthesia, doxapram minimizes or prevents the undesirable effects of post-anesthetic respiratory depression or hypventilation and hastens recovery.

Chemistry: The chemical name of doxapram hydrochloride is 1-ethyl-4-(2-morpholinoethyl)-3,3-diphenyl-2-pyrrolidinone hydrochloride hydrate.

The material is prepared as a clear, colorless, 2% aqueous solution with a pH of 3.5 to 5 and is stable at room temperature. Stability studies of 24 months’ duration have shown doxapram to have excellent stability characteristics. The preservative is benzyl alcohol, 0.9% and sterilization is accomplished by aseptic filtration technique. Doxapram is compatible with 5% and 10% dextrose in water or normal saline, but is physically incompatible with alkaline solutions, such as 2.5% thiopental sodium.

Species Variation: The dog responds more dramatically to doxapram than other species. For example, arousal was not observed in the rat, and the cat responded poorly in comparison with the dog. Respiratory stimulation was slight in the rat, moderate in the cat and marked in the dog and horse.

Effect on EEG: Studies show that while the drug acted selectively on respiratory centers of the brain, higher doses stimulated other parts of the neuraxis. The cortex appeared to be the most resistant part of the central nervous system to the action of the drug.

Effect on Cerebral Blood Flow: The effect of doxapram on cerebral blood flow in anesthetized dogs was determined. Initially, the drug caused a transient increase in blood flow concomitant with rising femoral arterial blood pressure. Flow then diminished while the blood pressure remained elevated. The decreased flow appeared to coincide with marked respiratory stimulation; its occurrence, therefore, is consistent with the known vasconstrictor effect of hypocapnia.

Dosage and Administration: The action of RESPIRAM™ (doxapram hydrochloride, USP) is rapid, usually beginning in a few seconds. The duration and intensity of response depends upon the dose, the condition of the animal at the time the drug is administered, and depth of anesthesia. Repeated doses should not be given until the effects of the first dose have passed and the condition of the patient requires it.

Doseage should be adjusted for depth of anesthesia, respiratory volume and rate. Dosage can be repeated in 15 to 20 minutes, if necessary.
Doseage of RESPIRAM™ (Doxapram Hydrochloride, USP) for neonate use:

Neonate Canine: Doxapram may be administered either subcutaneously, sublingually (topically) or via the umbilical vein in doses of 1-2.5 mg/kg (0.05 mL - 0.25 mL) depending on size of neonate and degree of respiratory crisis.

Technique for Umbilical Vein Administration:

When the neonate is presented through the incision of the uterus, placental membrane and fluid are removed from mouth and nose. A clamp is applied across the umbilical cord approximately 1-2 inches from abdomen of neonate. The umbilical vein is isolated and the selected dose of doxapram injected directly into the umbilical vein.

Neonate Feline: Doxapram may be administered either subcutaneously, sublingually (topically) or via umbilical vein in neonatal kittens and either subcutaneously or sublingually (topically) in neonatal kittens. Doxapram HCl in unanesthetized animals appears to be in the same dose range for various species of animals including mice, rats, adult and neonatal dogs and cats. Intravenously, the LD50 of doxapram HCl in unanesthetized animals appears to be in the same dose range for various species of animals including mice, rats, adult and neonatal dogs and cats. The highest MTD tested was determined to be approximately 40 mg/kg. Oral and subcutaneous LD50 was three to four times the intravenous LD50 whereas the intraperitoneal LD50 was about twice as great.

Safety Margin for the Various Species:

The acute LD50 of doxapram HCl in unanesthetized animals appears to be in the same dose range for various species of animals including mice, rats, adult and neonatal dogs and cats. The highest MTD tested was determined to be approximately 40 mg/kg. Oral and subcutaneous LD50 was three to four times the intravenous LD50 whereas the intraperitoneal LD50 was about twice as great.

The maximum tolerated dose (MTD) of doxapram HCl in unanesthetized animals appears to be in the same dose range for various species of animals including mice, rats, adult and neonatal dogs and cats. The highest MTD tested was determined to be approximately 40 mg/kg. Oral and subcutaneous MTD was three or four times the intravenous MTD whereas the intraperitoneal MTD was about twice as great.

The highest dose given intravenously to horses was 66 mg per 45.5 kg (100 lbs) with chloral hydrate anesthesia, and 60 mg per 45.5 kg (100 lbs) with gas anesthesia. All animals responded normally and no toxic symptoms were observed.

Doses of RESPIRAM™ should be adjusted to meet the requirements of the situation. Excessive doses may produce hyperventilation which may lead to respiratory alkalosis. A patent air passage is essential. Adequate, but not excessive, doses should be used and the blood pressure and reflexes should be checked periodically.

Warning: This drug is not be administered to horses that are to be slaughtered for use in food. Keep out of reach of children.

Toxicology:

Oral toxicity studies were carried out in nine dogs and sixty rats for 30 days. Dogs were given doxapram orally by capsule or stomach tube at doses of 20, 50, and 125 mg/kg/day, and one group received the drug intravenously at 20 mg/kg/day. Rats received the drug by stomach tube at 40, 80 and 160 mg/kg/day, with one group receiving 20 mg/kg intravenously daily. Four dogs died, three while receiving the high dose of 125 mg/kg and one at 50 mg/kg. At each dosage level signs of tremor, lacrimation, excessive salivation, occasional vomiting, diarrhea, stiffness of the extremities and respiratory stimulation were observed in all dogs. The hemogram, urinalysis and blood chemistry showed no changes which were considered attributable to the drug, with the exception of 3 dogs given 125 mg/kg orally. Hemoconcentration, leukopenia, numerous morphological cellular changes, and increase alkaline phosphates were reported in these animals. Histologically, the central nervous system in both species showed congestion, perivascular hemorrhages and petechial hemorrhages. These changes were interpreted as resembling hypoxic changes. The experiments were repeated in dogs at 2.5, 5, 10 and 20 mg/kg/day and no such lesions were seen.

The acute LD50 of doxapram appears to be in the same dose range for various species of animals including mice, rats, adult dogs, newborn dogs and cats. The intravenous LD50 was approximately 75 mg/kg while the oral and subcutaneous LD50's were three to four times greater and the intraperitoneal LD50 about twice as great.

No significant irritation was produced when a saline solution of doxapram at a pH of 4.3 was administered intramuscularly to rabbits at concentrations of 1, 2 and 4%. On the other hand, aqueous solutions of the same concentrations caused tissue irritation in lightly and deeply anesthetized animals has confirmed the effectiveness of doxapram in resuscitation of neonatal kittens. Doxapram HCl in unanesthetized animals appears to be in the same dose range for various species of animals including mice, rats, adult and neonatal dogs and cats. The highest MTD tested was determined to be approximately 40 mg/kg. Oral and subcutaneous MTD was three or four times the intravenous MTD whereas the intraperitoneal MTD was about twice as great.

Available in 20 mL multiple dose vials.

Storage conditions: 15° - 30° C (59° - 86°F)

References:

14. Ten animals had pre-existing EKG signs of cardiac damage and tolerated doxapram well.

15. In another study with 73 dogs subjected to various surgical procedures using methoxyflurane or halothane as the anesthetic, the arousal time was materially shortened, and respiratory minute volume and rate were increased following a single intravenous injection of 5 mg per kg of body weight (2.5 mg/lb). The most dramatic improvement occurred in lightly anesthetized dogs pretreated with either promazine or fentanyl-droperidol and atropine. Doxapram accelerated the return of pedal reflexes in all animals.

Manufactured for: Modern Veterinary Therapeutics, LLC

5500 Madruga Avenue, Suite 329
Coral Gables, Florida 33146 – USA
Tel. +1 305 669 4150 / Fax +1 305 251 9364
info@modernveterinarytherapeutics.com
www.modernveterinarytherapeutics.com

MADE IN USA

Rev. 8 V06, 0509